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SUMMARY

A fourth-order compact �nite di�erence scheme on the nine-point 2D stencil is formulated for solving
the steady-state Navier–Stokes=Boussinesq equations for two-dimensional, incompressible �uid �ow and
heat transfer using the stream function–vorticity formulation. The main feature of the new fourth-order
compact scheme is that it allows point-successive overrelaxation (SOR) or point-successive under-
relaxation iteration for all Rayleigh numbers Ra of physical interest and all Prandtl numbers Pr at-
tempted. Numerical solutions are obtained for the model problem of natural convection in a square cavity
with benchmark solutions and compared with some of the accurate results available in the literature.
Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: Navier–Stokes/Boussinesq equations; stream-function-vorticity formulation; compact
scheme; natural convection; heated cavity problem

1. INTRODUCTION

This paper is primarily aimed at developing a fourth-order compact �nite di�erence (FD)
scheme to solve the steady-state stream function–vorticity form of the two-dimensional, in-
compressible Navier–Stokes/Boussinesq equations governing the �uid �ow and heat transfer.
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It is known that FD methods of obtaining approximate numerical solutions of the steady-
state incompressible Navier–Stokes/Boussinesq equations can vary considerably in terms of
accuracy and e�ciency. In the area of �nite di�erences, the most familiar schemes are the
central di�erences and the so-called upwind di�erences [1]. It has been discovered that al-
though central di�erence approximations have a truncation error of order h2, they often su�er
from computational instability and the resulting solutions exhibit non-physical oscillations. The
upwind di�erence approximations are computationally stable, although only �rst-order accu-
rate, and the resulting solutions exhibit the e�ects of arti�cial viscosity. In addition, recent
studies by Brandt and Yanvneh [2], and Zhang [3] indicate that the �rst-order upwind and
the second-order central di�erence approximations may yield unreliable computational results
for some convection-dominated �ow problems. The second-order upwind FD approximations
su�er from similar problems and the higher-order FD approximations of conventional type
are computationally ine�cient. In the context of higher-order FDs, compact FD schemes have
good numerical stability and e�ciency, and o�er two attractive features: higher-order accu-
racy and small stencil. Consequently the number of numerical boundary conditions needed
is considerably reduced, compared with conventional type higher-order methods. This is of
great importance for the computation of various viscous �ow and heat transfer problems. In
recent years high-order compact FD methods have generated renewed interest and a variety
of specialized techniques have been developed, mainly for steady-state convection-di�usion
type problems in 2D, and applied to the incompressible N–S equations, see References [4–12]
and the references therein. Dennis and Hudson [4] developed a fourth-order compact nine-
point scheme. This method is a two-dimensional version of the methods of exponential type
and uses the Numerov approximation. They solved the problem of natural convection in a
square cavity with two vertical sidewalls maintained at di�erent temperatures and obtained
results up to Ra=105. In 1991, Gupta [5] applied his fourth-order compact formulation to the
solution of the steady, 2D, incompressible N-S equations in stream function–vorticity form.
This study was followed more recently by similar research by Spotz and Carey [6], and Li
et al. [7]. For the driven square cavity problem, Gupta solved up to Re=2000 (Re is the
non-dimensional Reynolds number) using point-SOR and successive approximations. Spotz
and Carey [6] solved up to Re=1000 using the generalized minimal residual method and
successive approximations. Li et al. [7] solved up to Re=7500 using point-SOR, Newton’s
method. For the heat cavity problem, Choo and Schultz [9] also presented a fourth-order
compact nine-point method which converged for both large Ra and small Pr. The method
was simple to implement, for it can use SOR iteration.
In this paper we derive a fourth-order compact FD scheme on the nine-point 2D stencil for

the stream function–vorticity formulation of the Navier–Stokes/Boussinesq equations governing
the �uid �ow and heat transfer. It is shown that the present scheme yields highly accurate
numerical solutions while still allowing point-successive overrelaxation or point-successive
underrelaxation iteration for both large Ra and small Pr.
The outline of the present paper is as follows. In the next section we �rst present the com-

pact nine-point fourth-order scheme for the steady-state Navier–Stokes/Boussinesq equations
for two-dimensional, incompressible �uid �ow and heat transfer using the stream function–
vorticity formulation. Then we test the new fourth-order compact schemes for the Navier–
Stokes/Boussinesq equations with the exact solutions in Section 3. In Section 4, the model
problem of a square heated cavity is described with detailed comparisons of our solutions
with existing solutions in the literature.
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2. NUMERICAL METHODS

The Navier–Stokes/Boussinesq equations representing the steady-state two-dimensional,
incompressible �uid �ow and heat transfer are given in stream function–vorticity form as

 xx +  yy =−� (1)

Txx + Tyy =  yTx −  xTy (2)

�xx + �yy = (1=Pr)( y�x −  x�y)− RaTx + f (3)

where  ; T and � represent the stream, temperature and vorticity functions, respectively, f
is a prescribed forcing function. Equations (2) and (3) are the non-conservation forms.
In this section we formulate a compact fourth-order FD method that can solve Equations

(1)–(3) with the novelty of ‘genuine compactness’, i.e. the compact scheme is strictly with
in the nine-point stencil. Note that each of these equations is a special case of the following
Poisson-type equation:

�xx +�yy= g (4)

where g= g(x; y). Note that �=  and g= − � in Equation (1); �=T and g=  yTx −  xTy
in Equation (2); �= � and g=(1=Pr)( y�x −  x�y)− RaTx + f in Equation (3).
To set up a compact FD scheme for (4), we use Figure 1 that denotes the placement of

nine points. Assuming a uniform mesh in both x- and y-directions, we number the mesh
points (x; y); (x+ h; y); (x; y+ h); (x− h; y); (x; y− h); (x+ h; y+ h); (x− h; y+ h); (x− h; y− h)
and (x+ h; y − h) as 0,1,2,3,4,5,6,7 and 8, respectively, where h is the mesh size. In writing
the FD approximations a single subscript ‘j’ denotes the corresponding function value at the
mesh point numbered ‘j’.
Following [13], the second derivative at the point (x; y), are approximated by

�xx0 =

[(
1 +

h2

12
�2x

)−1
�2x

]
�0 +O(h4) (5)

�yy0 =

[(
1 +

h2

12
�2y

)−1
�2y

]
�0 +O(h4) (6)

where �2x and �2y are de�ned as

�2x�0 =
�1 − 2�0 + �3

h2
; �2y�0 =

�2 − 2�0 + �4
h2

(7)

Substituting (5) and (6) into the left-hand side of Equation (4) yields[(
1 +

h2

12
�2y

)
�2x

]
�0 +

[(
1 +

h2

12
�2x

)
�2y

]
�0 =

(
1 +

h2

12
�2x +

h2

12
�2y

)
g0 +O(h4) (8)
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Figure 1. Computational stencil.

Using (7) in both sides of Equation (8), we get a fourth-order compact FD scheme for the
Poisson-type equation given by (4)

1
6h2

(
4

4∑
j=1
�j +

8∑
j=5
�j − 20�0

)
=
1
12

(
8g0 +

4∑
j=1

gj

)
(9)

Applying (7) to the left side of (8), and noting the use of

�2xg0 = gxx0 +O(h2); �2yg0 = gyy0 +O(h2) (10)

we can readily obtain another fourth-order compact FD scheme for the Poisson-type equation
given by (4)

1
6h2

(
4

4∑
j=1
�j +

8∑
j=5
�j − 20�0

)
= g0 +

h2

12
(gxx + gyy)0 (11)

Now we are ready to set up the fourth-order FD schemes for each of the Equations (1)–(3).
First, for Equation (1), where �=  and g= −�, we have the following compact fourth-order
FD scheme by (9)

1
6h2

(
4

4∑
j=1

 j +
8∑

j=5
 j − 20 0

)
= − 1

12

(
8�0 +

4∑
j=1

�j

)
(12)

Next, for Equation (2), where �=T and g=  yTx −  xTy, we have by (11):

1
6h2

(
4

4∑
j=1

Tj +
8∑

j=5
Tj − 20T0

)

=( yTx −  xTy)0 +
h2

12
[( yTx −  xTy)xx + ( yTx −  xTy)yy]0 (13)
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Straightforwardly calculating and using (2), we have

( yTx −  xTy)xx + ( yTx −  xTy)yy

=Tx( xx +  yy)y − Ty( xx +  yy)x +  y(Txx + Tyy)x

− x(Txx + Tyy)y + 2 xy(Txx − Tyy) + 2Txy( yy −  xx)

= − Tx�y + Ty�x +  y( yTx −  xTy)x −  x( yTx −  xTy)y

+2 xy(Txx − Tyy) + 2Txy( yy −  xx) (14)

This result implies that [( yTx −  xTy)xx + ( yTx −  xTy)yy]0 in (13) is a combination of �rst
and second derivatives of T and  , which can be approximated to a truncation error O(h2)
by the 3 × 3 grid points. That is, [( yTx −  xTy)xx + ( yTx −  xTy)yy]0 can be approximated
by Tj;  j; 06j68, giving a truncation error of order O(h2). We now consider the term
( yTx −  xTy)0. For a fully fourth-order FD we need to approximate  x;  y; Tx and Ty with
O(h4) accuracy, which is done as follows:

 2 −  4
2h

= ( y)0 +
h2

6
( yyy)0 +O(h4) (15)

 1 −  3
2h

= ( x)0 +
h2

6
( xxx)0 +O(h4) (16)

The above results, together with similar ones for T , yield

( yTx −  xTy)0 =
1
4h2

[( 2 −  4)(T1 − T3)− ( 1 −  3)(T2 − T4)]

− h2

6
( yTxxx −  xTyyy + Tx yyy − Ty xxx)0 +O(h4) (17)

To avoid extra points outside the (3× 3)-point domain being required, we observe that

 yTxxx −  xTyyy + Tx yyy − Ty xxx

=  y(Txx + Tyy)x −  yTxyy −  x(Txx + Tyy)y +  xTxxy − Tx( xxy + �y) + Ty( xyy + �x)

=  y( yTx −  xTy)x −  x( yTx −  xTy)y −  yTxyy +  xTxxy

−Tx xxy + Ty xyy − Tx�y + Ty�x (18)

Combining (17) and (18) gives

( yTx −  xTy)0 =
1
4h2

[( 2 −  4)(T1 − T3)− ( 1 −  3)(T2 − T4)]
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−h2

6
[ yTx −  xTy)x −  x( yTx −  xTy)y −  yTxyy +  xTxxy

−Tx xxy + Ty xyy − Tx�y + Ty�x]0 +O(h4)

The above results together with (14), yields

1
6h2

(
4

4∑
j=1

Tj +
8∑

j=5
Tj − 20T0

)

=
1
4h2

[( 2 −  4)(T1 − T3)− ( 1 −  3)(T2 − T4)]

+
h2

12
[( x yyTx +  y xxTy + 2 x yTxy −  x xyTy −  y xyTx −  2x Tyy −  2yTxx)

+2( yTxyy −  xTxxy +  xxyTx −  xyyTy) + �yTx − �xTy

+2 xy(Txx − Tyy) + 2( yy −  xx)Txy]0 +O(h4) (19)

It is clear that all derivatives of  ; T and � in (19) can be approximated up to O(h2) with
the nine-point stencil. We derive a series of second-order di�erence formulas by Taylor series
expansions, such as

uxx =
u1 − 2u0 + u3

h2
+O(h2); uxy=

u5 − u6 + u7 − u8
4h2

+O(h2) (20)

ux =
u1 − u3
2h

+O(h2); uxxy=
u5 + u6 − u7 − u8 − 2(u2 − u4)

2h3
+ +O(h2) (21)

Applying (20) and (21) to (19) and using (13), and rearranging (13), we obtain the following
fourth-order compact scheme for Equation (2):

8∑
j=0

AjTj =0 (22)

A0 =−40− 1
2 [( 1 −  3)2 + ( 2 −  4)2] (23)

A1 = 8− ( 2 −  4 +  5 −  8)− 1
4 [( 1 −  3)( 2 − 2 0 +  4)

− 1
4 ( 2 −  4)( 5 −  6 +  7 −  8)− ( 2 −  4)2 + h2(�2 − �4)] (24)

A2 = 8− (− 1 +  3 −  5 +  6)− 1
4 [( 2 −  4)( 1 − 2 0 +  3)

− 1
4 ( 1 −  3)( 5 −  6 +  7 −  8)− ( 1 −  3)2 − h2(�1 − �3)] (25)

A3 = 8− (− 2 +  4 −  6 +  7)− 1
4 [(− 1 +  3)( 2 − 2 0 +  4)

+1
4 ( 2 −  4)( 5 −  6 +  7 −  8)− ( 2 −  4)2 − h2(�2 − �4)] (26)
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A4 = 8− ( 1 −  3 −  7 +  8)− 1
4 [(− 2 +  4)( 1 − 2 0 +  3)

+1
4 ( 1 −  3)( 5 −  6 +  7 −  8)− ( 1 −  3)2 + h2(�1 − �3)] (27)

A5 = 2− (− 1 +  2)− 1
8 ( 1 −  3)( 2 −  4) (28)

A6 = 2− (− 2 +  3) + 1
8 ( 1 −  3)( 2 −  4) (29)

A7 = 2− (− 3 +  4)− 1
8 ( 1 −  3)( 2 −  4) (30)

A8 = 2− (− 4 +  1) + 1
8 ( 1 −  3)( 2 −  4) (31)

Finally, for Equation (3), in which �= � and g=(1=Pr)( y�x −  x�y) − RaTx + f, we have
by (11):

1
6h2

(
4

4∑
j=1

�j +
8∑

j=5
�j − 20�0

)

=(1=Pr)
{
( y�x −  x�y) +

h2

12
[( y�x −  x�y)xx + ( y�x −  x�y)yy]

}
0

−Ra
{
Tx +

h2

12
[(Tx)xx + (Tx)yy]

}
0
+ f0 +

h2

12
(fxx + fyy)0

= J1 +
h2

12
J2 + f0 +

h2

12
(fxx + fyy)0 (32)

where J1 = (1=Pr)( y�x− x�y)0−Ra(Tx)0 and J2 = (1=Pr)[( y�x− x�y)xx+( y�x− x�y)yy]0−
Ra[(Tx)xx + (Tx)yy]0. Straightforwardly calculating and using (3) and (2), we have

( y�x −  x�y)xx + ( y�x −  x�y)yy

= �x( xx +  yy)y − �y( xx +  yy)x +  y(�xx + �yy)x −  x(�xx + �yy)y

+2 xy(�xx − �yy) + 2�xy( yy −  xx)

= (1=Pr) y( y�x −  x�y)x − (1=Pr) x( y�x −  x�y)y − Ra( yTxx −  xTxy)

+ ( yfx −  xfy) + 2 xy(�xx − �yy) + 2�xy( yy −  xx) (33)

(Tx)xx + (Tx)yy = (Txx + Tyy)x

= ( yTx −  xTy)x

=  yTxx −  xTxy +  xyTx −  xxTy (34)

These results imply that J2 in (32) is a combination of �rst and second derivatives of T; �
and  , which can be approximated to a truncation error O(h2) by the 3× 3 grid points. That

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:495–518



502 Z. TIAN AND Y. GE

is, J2 can be approximated by Tj; �j and  j; 06j68, giving a truncation error of order O(h2).
We now consider the term J1. Notice that (15) and (16), together with similar ones for � and
T , yield

( y�x −  x�y)0 =
1
4h2

[( 2 −  4)(�1 − �3)− ( 1 −  3)(�2 − �4)]

−h2

6
( y�xxx −  x�yyy +  yyy�x −  xxx�y)0 +O(h4) (35)

(Tx)0 =
T1 − T3
2h

− h2

6
(Txxx)0 +O(h4) (36)

To avoid extra points outside the (3× 3)-point domain being required, we observe that

 y�xxx −  x�yyy + �x yyy − �y xxx

=  y(�xx + �yy)x −  y�xyy −  x(�xx + �yy)y +  x�xxy − �x( xxy + �y) + �y( xyy + �x)

= (1=Pr) y( y�x −  x�y)x − (1=Pr) x( y�x −  x�y)y − Ra( yTxx −  xTxy)

+( yfx −  xfy)−  y�xyy +  x�xxy − �x xxy + �y xyy (37)

Txxx = ( yTx −  xTy − Tyy)x

=  yTxx −  xTxy +  xyTx −  xxTy − Tyyx (38)

Combining (33), (35) and (37) gives

{
( y�x −  x�y) +

h2

12
[( y�x −  x�y)xx + ( y�x −  x�y)yy]

}
0

= [( 2 −  4)(�1 − �3)− ( 1 −  3)(�2 − �4)]=(4h2)

+
h2

12
[(1=Pr)( x yy�x +  y xx�y + 2 x y�xy −  x xy�y −  y xy�x −  2x �yy −  2y�xx)

+Ra( yTxx −  xTxy)− ( yfx −  xfy) + 2 xy(�xx − �yy) + 2( yy −  xx)�xy

+2( y�xyy −  x�xxy +  xxy�x −  xyy�y)]0 (39)

Combining (34), (36) and (38), we have

{
Tx +

h2

12
[(Tx)xx + (Tx)yy]

}
0

=
T1 − T3
2h

− h2

12
( yTxx −  xTxy +  xyTx −  xxTy − 2Txyy)0 (40)
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The above result together with (32), yields

1
6h2

(
4

4∑
j=1

�j +
8∑

j=5
�j − 20�0

)

=(1=Pr)
{
1
4h2

[( 2 −  4)(�1 − �3)− ( 1 −  3)(�2 − �4)]

+
h2

12
[(1=Pr)( x yy�x +  y xx�y + 2 x y�xy −  x xy�y −  y xy�x −  2x �yy −  2y�xx)

+Ra( yTxx −  xTxy) + 2 xy(�xx − �yy) + 2( yy −  xx)�xy

+2( y�xyy −  x�xxy +  xxy�x −  xyy�y)]0}

−Ra
T1 − T3
2h

+ Ra
h2

12
( yTxx −  xTxy +  xyTx −  xxTy − 2Txyy)0

+f0 +
h2

12
{[(−1=Pr) y]fx + [(1=Pr) x]fy + fxx + fyy}0 +O(h4) (41)

It is clear that all derivatives of  and � in (41) can be approximated up to O(h2) with the
nine-point stencil.
Applying the di�erence formulas (20) and (21) to (41) and using (32), and rearranging

(32), we obtain the following fourth-order compact scheme for Equation (3):

1
12h2

8∑
j=0

Bj�j =−Ra
T1 − T3
2h

+ Ra
h2

12
( yTxx −  xTxy +  xyTx −  xxTy − 2Txyy)0

−Ra
h2

12
[(−1=Pr) yTxx + (1=Pr) xTxy]0

+f0 +
h2

12
[(−1=Pr) yfx + (1=Pr) xfy + fxx + fyy]0 (42)

B0 =−40− 1
2Pr2

[( 1 −  3)2 + ( 2 −  4)2] (43)

B1 = 8− 1
Pr
( 2 −  4 +  5 −  8)− 1

4
1

Pr2
[( 1 −  3)( 2 − 2 0 +  4)

−1
4
( 2 −  4)( 5 −  6 +  7 −  8)− ( 2 −  4)2] (44)

B2 = 8− 1
Pr
(− 1 +  3 −  5 −  6)− 1

4
1

Pr2
[( 2 −  4)( 1 − 2 0 +  3)

−1
4
( 1 −  3)( 5 −  6 +  7 −  8)− ( 1 −  3)2] (45)

B3 = 8− 1
Pr
(− 2 +  4 −  6 +  7)− 1

4
1

Pr2
[(− 1 +  3)( 2 − 2 0 +  4)

+
1
4
( 2 −  4)( 5 −  6 +  7 −  8)− ( 2 −  4)2] (46)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:495–518
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B4 = 8− 1
Pr
( 1 −  3 −  7 +  8)− 1

4
1

Pr2
[(− 2 +  4)( 1 − 2 0 +  3)

+
1
4
( 1 −  3)( 5 −  6 +  7 −  8)− ( 1 −  3)2] (47)

B5 = 2− 1
Pr
(− 1 +  2)− 1

8
1

Pr2
( 1 −  3)( 2 −  4) (48)

B6 = 2− 1
Pr
(− 2 +  3) +

1
8
1

Pr2
( 1 −  3)( 2 −  4) (49)

B7 = 2− 1
Pr
(− 3 +  4)− 1

8
1

Pr2
( 1 −  3)( 2 −  4) (50)

B8 = 2− 1
Pr
(− 4 +  1) +

1
8
1

Pr2
( 1 −  3)( 2 −  4) (51)

In (42), all derivatives of T can be approximated with O(h2) on the nine-point stencil. Thus,
we have a fully fourth-order compact scheme for Equation (3).
The new fourth-order compact schemes (12), (22) and (42) are to be solved by a point-

SOR/ successive underrelaxation method.

3. NAVIER–STOKES/BOUSSINESQ EQUATIONS WITH EXACT SOLUTION

In this section we obtain numerical solutions of (1), (2) and (3) using the new fourth-order
compact scheme (12), (22) and (42). The test problem used is chosen such that the analytical
solution is available, so a rigorous comparison can be made.
To construct a test problem with known solution we specify the temperature and the stream

function

T = x + y;  =1=Pr ex+y

on the unit square. The corresponding vorticity function, derived from (1), is

�= − 2=Pr ex+y

and the forcing function, derived from (3), is

f=Ra− 4=Pr ex+y

We notice that the above solution is smooth in the unit square.
We consider the test problem with Dirichlet boundary conditions, i.e. boundary values of

 ; T and � are given. Various Rayleigh numbers ranging from Ra=102 to 104 and Prandtl
numbers 0:016Pr61 were tested. Tables I–III show RMS (root-mean-square) errors err1 and
err2, which were obtained from the grid system having (N1+1)×(N1+1) and (N2+1)×(N2+1)
points, respectively. With these values, the resulting rate of convergence was estimated in the
unit square for stream function, vorticity and temperature. The rate of convergence is de�ned
below:

rate=
log(err1=err2)
log(N1=N2)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:495–518
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Table I. RMS errors with the rate of convergence in (0; 1) × (0; 1) for stream function,
vorticity and temperature at Ra=102 and Pr=1.

Grid �-error Rate  -error Rate T -error Rate

6× 6 3:436(−4) — 1:408(−5) — 2:752(−5) —
11× 11 1:907(−5) 4.17 7:577(−7) 4.22 1:567(−6) 4.13
21× 21 1:123(−6) 4.09 4:472(−8) 4.08 9:297(−8) 4.07
41× 41 6:826(−8) 4.04 2:731(−9) 4.03 5:660(−9) 4.04

Note: 3:436(−4)= 3:436× 10−4, etc.

Table II. RMS errors with the rate of convergence in (0; 1) × (0; 1) for stream function,
vorticity and temperature at Ra=104 and Pr=1.

Grid �-error Rate  -error Rate T -error Rate

6× 6 1:465(−2) — 5:554(−4) — 3:576(−5) —
11× 11 9:351(−4) 3.97 3:308(−5) 4.07 2:049(−6) 4.13
21× 21 5:584(−5) 4.07 1:956(−6) 4.08 1:210(−7) 4.08
41× 41 3:402(−6) 4.04 1:192(−7) 4.04 7:367(−9) 4.04

Table III. RMS errors with the rate of convergence in (0; 1)× (0; 1) for stream function, vorticity and
temperature at Ra=102 and Pr=10−2.

Grid �-error Rate  -error Rate T -error Rate

21× 21 7:599(−7) — 7:970(−7) — 2:543(−5) —
31× 31 1:475(−7) 4.04 7:706(−8) 4.04 5:618(−6) 3.73
41× 41 4:622(−8) 4.03 2:418(−8) 4.03 1:844(−6) 3.87

It is observed that the convergence rates for the h4 scheme, (12), (22) and (42), are four.
This con�rms that the compact scheme (12), (22) and (42) is of fourth-order accuracy when
the solutions of (1), (2) and (3) are smooth. This test problem is solved by the point-SOR
iteration method.

4. HEATED CAVITY PROBLEM

As a model problem we consider a square cavity (06x61; 06y61) with di�erentially heated
vertical (left and right) walls and adiabatic horizontal (top and bottom) walls (see Figure 2),
which is one of the classical problems in the �eld of heat transfer. The boundary conditions
for the present problem can be speci�ed as follows:

 =0;  x=0; T =1 (52)

on the hot wall,

 =0;  x=0; T =0 (53)
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on the cold wall, and

 =0;  y=0; Ty=0 (54)

on the top and bottom walls.
In particular, the above model problem has been frequently used as a test problem for

assessing the performance of numerical solution techniques. A comprehensive comparison
paper concerning the numerical solutions on this problem was published by de Vahl Davis
and Jones [15]. They summarized numerical results from 37 sources for the case of Pr=0:71
with Ra ranging from 103 to 106. The results of various contributions were compared with
benchmark solutions proposed by de Vahl Davis [16], who formulated the problem in terms of
stream-function and vorticity and used a �nite di�erence technique, along with grid re�nement
(up to 81 × 81 points) and extrapolation procedures. As regards more recent work on this
topic, some studies that are particularly worth mentioning are those of Choo and Schultz [9],
Hortmann et al. [17], Le Qu�er�e [18], and Syrj�al�a [19].

4.1. High-order numerical boundary conditions

The implementation of numerical boundary conditions has received considerable attention in
the past. In the previous section, we formulated the high-order compact di�erence method for
given Equations (1)–(3). In this section, we shall present high-order formulas for the heated
cavity problem on and near the boundary.
For the case Ty=0 on the side boundaries, if we use the formula

Ty|0 = (−2T−1 − 3T0 + 6T1 − T2)=(±6h) +O(h3) (55)

where the notation in Figure 3 is used, and solve Ty|0 = 0 for T−1, we obtain the temperature
on the outer boundary

T−1 = (−3T0 + 6T1 − T2)=2 +O(h4) (56)

To prevent numerical instability, it is necessary to give an inner boundary on the stream
function equation. (The term ‘inner boundary’ denotes the set of all points that lie at a distance
h from the boundary.) We reason that this is because it forces the derivative condition in (52),
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(53) and (54) to be satis�ed. Using Taylor series, we can write

 1 + � 2 + � 3 = (1 + �+ �) 0 + (1 + 2�+ 3�)h no

+ (1 + 4�+ 9�)h2=2 nno + (1 + 8�+ 27�)h3=6 nnno

+ (1 + 16�+ 81�)h4=24 nnnno +O(h5) (57)

Here,  no represents the derivative of  in the direction normal to the wall at the wall. We
choose

1 + 8�+ 27�=0; 1 + 16�+ 81�=0 (58)

to cancel the h3 and h4 terms, to yield

 1 + � 2 + � 3 = (1 + �+ �) 0 + (1 + 2�+ 3�)h no + (1 + 4�+ 9�)h2=2 nno +O(h5) (59)

Solving linear system (58), we obtain

�= − 1
4 ; �= 1

27 (60)

Substituting (60) into (59), and using Equations (52), (53), (54) and (1), yields

 1 = (1=4) 2 − (1=27) 3 − (h2=6)�0 (61)

Since there is no explicit boundary condition for �, we need to update boundary vorticities.
Using Taylor series, we have

 1 + � 2 = (1 + �) 0 + h(1 + 2�) no + (h2=2)(1 + 4�) nno + (h3=6)(1 + 8�) nnno

+ (h4=24)(1 + 16�) nnnno +O(h5) (62)

Using (1),  nn in (62) can be written as

 nno =−�0 −  ss0

=−�0 (63)
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where we have used the fact that  ss0 = 0 on a wall (s is the local direction tangent to on the
boundaries). Furthermore, di�erentiating (63),

 nnno =−�no −  ssno

=−�no (64)

Substituting (63) and (64) into (62), and setting �= − 1
16 and using Equations (52), (53),

(54) and (1) again to substitute for the �rst and second derivatives, gives

16 1 −  2 = − 6h2�0 − (4h3=3)�no +O(h5) (65)

Thus, if we use

�no = (−3�0 + 4�1 − �2)=(2h) +O(h2) (66)

to substitute for �no, the resulting high-order formula is

(h=21)(6�0 + 4�1 − �2) +O(h4)= (−16 1 +  2)=(14h) (67)

This expression is fourth-order-accurate [14], while using only three grid points for  and �.
Various high-order approximations were tried in place of (56), (61) and (67). However,

the approximation (56), (61) and (67) gave the best overall results. The di�erences between
results for the various approximations could be made negligible by using a small enough h.

4.2. Finite di�erence algorithm

The �nite di�erence algorithm is now brie�y outlined. Suppose  (n); T (n) and �(n)are known.
The solution of the discrete Navier–Stokes/Boussinesq equations (12), (22) and (42) is
obtained by the following iterative procedure:

1. Solution of the stream-function equation (12)
(a) Determine inner boundaries on the stream function equation from (61):

 (n+1)1 = (1=4) (n)2 − (1=27) (n)3 − (h2=6)�(n)0 (68)

where the notation in Figure 3 is used.
(b) In region [2h; 1−2h]× [2h; 1−2h], solve the stream function equation (12) to obtain

 (n+1) from:

1
6h2

(
4

4∑
j=1

 (n+1)j +
8∑

j=5
 (n+1)j − 20 (n+1)0

)
= − 1

12

(
8�(n)0 +

4∑
j=1

�(n)j

)
(69)

where the notation in Figure 1 is used.
2. Solution of the temperature equation (22)
(a) Determine the temperature T (n+1)−1 on the outer boundary from (56):

T (n+1)−1 = (−3T (n)0 + 6T (n)1 − T (n)2 )=2 (70)

where the notation in Figure 3 is used.
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(b) In region [h; 1−h]×[0; 1], solve the temperature equation (22) to obtain T (n+1) from:

8∑
j=0

A(n+1)j T (n+1)j =0 (71)

where the notation in Figure 1 is used, and Aj are determined by (23)–(31).
3. Solution of the vorticity equation (42)
(a) Determine the vorticity boundary �(n+1)0 from (67):

(h=21)(6�(n+1)0 + 4�(n)1 − �(n)2 )= (−16 (n+1)1 +  (n+12 ))=(14h) (72)

where the notation in Figure 3 is used.
(b) In region [h; 1−h]× [h; 1−h], solve the vorticity equation (42) to obtain �(n+1) from:

1
12h2

8∑
j=0

B(n+1)j �(n+1)j

=
{
−Ra

T1 − T3
2h

+ Ra
h2

12
( yTxx −  xTxy +  xyTx −  xxTy − 2Txyy)

−Ra
h2

12
[(−1=Pr) yTxx + (1=Pr) xTxy]

}(n+1)
0

(73)

where the notation in Figure 1 is used, and Bj are determined by (43)–(51).
4. Repeat the steps 1 to 3 from n=0; 1; 2; : : : until a certain convergence criterion is met.

The iterative steps 1 to 3 form an ‘outer iteration’. If Equations (69) subject to the boundary
conditions (68) are solved by an iterative procedure, then the step 1 is called an ‘inner
iteration’ for  . Similarly, if Equations (71) or (73) subject to the boundary conditions are
solved by an iterative procedure, then the steps 2, 3 are called inner iterations for T; �. The
similar inner-outer iteration procedure has been described by Gupta and Manohar [20]. In the
present work, we use one or more inner iterations for  ; T and an inner iteration for � at
each outer iteration.

4.3. Comparisons with existing solutions

In this section, converged solutions have been obtained for Prandtl numbers Pr=0:71 with
Ra ranging from 103 to 107. Results have been obtained for the number of grid spacing n in
each direction varying from 20 to 160. All results were run on the Pentium/200. The time for
Ra=105 and n=20 was 13:18 s, for Ra=105 and n=40 it was 1 min 12:66 s, for Ra=105

and n=60 it was 8min 27:56 s, for Ra=105 and n=80 it was 16min 48 s and for Ra=105

and n=100 it was 61min 47:19s. We used point-SOR or successive underrelaxation iteration
with a root-mean-square (RMS) convergence test of 10−4.
Tables IV–VIII contain results which are compared with those of de Vahl Davis [16],

Dennis and Hudson [4], Chen et al. [8], Choo and Schultz [9], Hortmann and Peri�c [17],
Le Qu�er�e [18], and Syrj�al�a [19]. In each table, the following reference quantities were
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Table IV. Comparison of the bench mark solution by de Vahl Davis [16], the compact dif-
ference solutions by Dennis and Hudson [4] and Chen et al. [8], and the stable fourth-order

solutions by Choo and Schultz [9] (Ra=103; Pr=0:71).

umax vmax Numax Numin
First author | mid| | |max y(x=0:5) x(y=0:5) Nu0 y(x=0) y(x = 0)

Present (n=20) 1:1742 1:1742 3:6488 3:6967 1:1174 1:5042 0:6920
0:8133 0:1782 0:0928 1

Present (n=30) 1:1744 1:1744 3:6491 3:6969 1:1174 1:5053 0:6912
0:8131 0:1785 0:0892 1

Present (n=40) 1:1744 1:1744 3:6489 3:6966 1:1175 1:5056 0:6911
0:8133 0:1784 0:0889 1

Present (n=50) 1:1743 1:1743 3:6484 3:6962 1:1175 1:5057 0:6912
0:8133 0:1784 0:0887 1

Present (n=60) 1:1741 1:1741 3:6481 3:6958 1:1176 1:5058 0:6912
0:8133 0:1783 0:0886 1

De Vahl Davis [16] 1:174 n.a. 3:649 3:697 1:117 1:505 0:692
0:813 0:178 0:092 1

Dennis et al. [4] 1:1747 n.a. 3:6497 3:6977 1:1176 1:5058 0:6913
0:8132 0:1783 0:0871 1

Chen et al. [8] 1:1746 n.a. 3:6501 3:6980 1:1172 1:5055 0:6915
0:8131 0:1784 0:0860 1

Choo et al. [9] 1:174 1:174 n.a. n.a. 1:116 n.a. n.a.
n.a. n.a. n.a. n.a.

n.a. =Not available.

considered:

| mid|: the absolute value of stream function in the midpoint of the cavity
| |max: the maximum absolute value of stream function
umax: the maximum value of horizontal velocity component on the vertical midplane (x=0:5)

of the cavity, together with its location
vmax: the maximum value of vertical velocity component on the horizontal midplane (y=0:5)

of the cavity, together with its location
Nu0: the average Nusselt number Nu on the heated wall (x=0)

Numax: the maximum values of the local Nusselt number on the heated side (x=0), together
with their locations

Numin: the minimum values of the local Nusselt number on the heated side (x=0), together
with their locations

It is worth pointing out that in the present study the maximum values of the reference
quantities and their locations were obtained by interpolation from the adjacent nodal values.
Following de Vahl Davis [16], we de�ne the local Nusselt number at the hot wall (x=0) as

Nu= − (Tx)0; j (74)

From Equation (74), we obtain immediately the average values of the Nusselt number across
the left boundary

Nu0 = −
∫ 1

0
(Tx)0; j dy (75)
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Table V. Comparison of the bench mark solution by de Vahl Davis [16], the compact di�erence solutions
by Dennis and Hudson [4] and Chen et al. [8], the stable fourth-order solutions by Choo and Schultz
[9], the �nite volume multigrid results by Hortmann and Peric [17], and the �nite element solutions by

Syrj�al�a [19] (Ra=104; Pr=0:71).

First author | mid| | |max umax vmax Nu0 Numax Numin

Present (n=20) 5:0759 5:0759 16:1979 19:6352 2:2408 3:5208 0:5863
0:8232 0:1192 0:1454 1

Present (n=30) 5:0748 5:0748 16:1876 19:6313 2:2426 3:5256 0:5847
0:8232 0:1190 0:1452 1

Present (n=40) 5:0743 5:0743 16:1849 19:6295 2:2434 3:5278 0:5846
0:8233 0:1189 0:1449 1

Present (n=50) 5:0740 5:0740 16:1840 19:6287 2:2439 3:5289 0:5846
0:8232 0:1189 0:1446 1

Present (n=60) 5:0738 5:0738 16:1837 19:6282 2:2441 3:5295 0:5847
0:8233 0:1189 0:1445 1

De Vahl Davis [16] 5:071 n.a. 16:178 19:617 2:238 3:528 0:586
0:823 0:119 0:143 1

Dennis [4] 5:0735 n.a. 16:1829 19:6293 2:2396 3:5193 0:5851
0:8232 0:119 0:1440 1

Chen [8] 5:0735 n.a. 16:1809 19:6297 2:2361 3:5180 0:5855
0:8233 0:1191 0:1435 1

Choo [9] 5:073 5:073 n.a. n.a. 2:243 n.a. n.a.
n.a. n.a. n.a. n.a.

Hortmann [17] n.a. n.a. 16:1759 19:6242 2:2447 3:5313 n.a.
0:8255 0:1201 0:8540 n.a.

Syrj�al�a [19] 5:0737 n.a. 16:1834 19:6282 2:448 n.a. n.a.
0:8232 0:1189 n.a. n.a.

As in Reference [16], the average values of Nusselt number was calculated through the use
of Simpson’s rule to approximation the integration in Equation (75). For an arbitrary node
(x0; yj) along the vertical wall x=0, the given (Tx)0; j is

(Tx)0j = (−15T0; j + 16T1; j − T2; j)=(14h)

+ [−3(T0; j+1 − 2T0; j + T0; j−1) + 4(T1; j+1 − 2T1; j + T1; j−1)

−(T2; j+1 − 2T2; j + T0; j−1)]=(21h) (76)

This expression is fourth-order-accurate, while using only three grid points for T (along the
x-direction). A brief derivation of formula (76) is given in Appendix A.
All velocity �eld results are presented in terms of the stream function:

u=  y; v= −  x (77)

The velocities u; v at a grid point (x; y) are calculated from the discrete approximation of
Equation (77). The following approximations are compact and have a local truncation error
of order h4 [13]:

u2 + 4u0 + u4 = ( y)2 + 4( y)0 + ( y)4 =3( 2 −  4)=h (78)

v1 + 4v0 + v3 = (− x)1 + 4(− x)0 + (− x)3 = − 3( 1 −  3)=h (79)
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Table VI. Comparison of the bench mark solution by de Vahl Davis [16], the compact di�erence
solutions by Dennis and Hudson [4] and Chen et al. [8], the stable fourth-order solutions by Choo
and Schultz [9], the �nite volume multigrid results by Hortmann and Peri�c [17], and the �nite element

solutions by Syrj�al�a [19] (Ra=105; Pr=0:71).

First author | mid| | |max umax vmax Nu0 Numax Numin

Present (n=30) 9:1152 9:6038 34:7640 68:6361 4:5112 7:6920 0:7315
0:8546 0:0661 0:0808 1

Present (n=40) 9:1159 9:6119 34:7495 68:6404 4:5156 7:6967 0:7284
0:8549 0:0660 0:0827 1

Present (n=50) 9:1162 9:6164 34:7450 68:6397 4:5177 7:7043 0:7276
0:8547 0:0659 0:0829 1

Present (n=60) 9:1162 9:6174 34:7428 68:6387 4:5189 7:7091 0:7275
0:8546 0:0659 0:0828 1

Present (n=70) 9:1161 9:6173 34:7417 68:6383 4:5195 7:7121 0:7275
0:8546 0:0659 0:0827 1

De Vahl Davis [16] 9:111 9:612 34:73 68:59 4:509 7:717 0:729
0:855 0:066 0:081 1

Dennis [4] 9:1126 n.a. 34:716 68:637 4:4959 7:6830 0:7279
0:8545 0:0660 0:0800 1

Chen [8] 9:1105 n.a. 34:6977 68:7055 4:5220 7:8126 0:7278
0:8550 0:0669 0:0801 1

Choo [9] 9:116 9:617 n.a. n.a. 4:524 n.a. n.a.
n.a. n.a. n.a. n.a.

Hortmann [17] n.a. n.a. 34:7385 68:6359 4:5219 7:7269 n.a.
0:8554 0:0660 0:9177 n.a.

Syrj�al�a [19] 9:1156 n.a. 34:7406 68:6365 4:5216 n.a. n.a.
0:8546 0:0659 n.a. n.a.

Tables IV–VIII compare the present results for Ra=103; 104; 105; 106 and 107 with the
benchmark solutions in de Vahl Davis [16], the compact di�erence solutions in Dennis and
Hudson [4] and Chen et al. [8], the stable fourth-order di�erence solutions in Choo and
Schultz [9], the �nite-volume multigrids solutions in Hortmann and Peri�c [17], the results
from Le Qu�er�e [18], who solved the problems using a pseudo-spectral Chebyshev algorithm,
and the �nite element solutions in Syrj�al�a [19]. These tables show the excellent agreement of
the present results with those of the benchmark solution and the stable fourth-order method
for all the values of Ra from 103 to 106, with those of the compact di�erence method up to
105, with those of Le Qu�er�e for Ra=106 and 107, and with those of �nite element method
for Ra=105 and 106.
Tables IV–VIII also show the convergence of the current compact fourth-order method as

n increases (h decreases). Note that there is very little change in the results in Tables IV–VIII
for n=40, 50 and 60 for Ra6104, and for n=50, 60 and 70 for Ra=105, and for n=80,
100 and 120 for Ra=106, showing excellent convergence. For Ra=107 the results are quite
close for n=120, 140 and 160. Although the present method showed excellent convergence, a
�ner mesh size was needed for larger Ra to obtain accuracy. This limitation may be overcome
by the use of mesh re�nement or co-ordinate transformation, which is under consideration.
To obtain a clearer assessment of our O(h4) results, the percentage di�erences with re-

spect to the reference quantities are also given in Table IX. The solutions of de Vahl Davis
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Table VII. Comparison of the bench mark solution by de Vahl Davis [16], the compact di�erence
solutions by Dennis and Hudson [4] and Chen et al. [8], the stable fourth-order solutions by Choo
and Schultz [9], the �nite volume multigrid results by Hortmann and Peric [17], the results from

Le Qu�er�e [8], and the �nite element solutions by Syrj�al�a [19] (Ra=106; Pr=0:71).

First author | mid| | |max umax vmax Nu0 Numax Numin

Present (n=40) 16:3767 16:8015 65:0021 220:6320 8:7832 17:7970 0:9997
0:8505 0:0380 0:0287 1

Present (n=60) 16:3777 16:8028 64:8630 220:5371 8:8079 17:4795 0:9820
0:8501 0:0378 0:0380 1

Present (n=80) 16:3834 16:8082 64:8442 220:5616 8:8164 17:4784 0:9793
0:8499 0:0378 0:0393 1

Present (n=100) 16:3855 16:8101 64:8383 220:5668 8:8197 17:4962 0:9788
0:8499 0:0377 0:0396 1

Present (n=120) 16:3863 16:8107 64:8308 220:5675 8:8216 17:5087 0:9787
0:8501 0:0377 0:0396 1

De Vahl Davis [16] 16:320 16:750 64:63 219:36 8:817 17:925 0:989
0:850 0:037 0:037 1

Choo [9] 16:379 16:804 n.a. n.a. 8:870 n.a. n.a.
n.a. n.a. n.a. n.a.

Hortmann [17] n.a. n.a. 64:8340 220:473 8:8255 17:540 n.a.
0:8504 0:0389 0:9610 n.a.

Le Qu�er�e [18] 16:3864 16:8111 64:8344 220:559 8:8252 17:5360 0:9795
0:850 0:038 0:0378 1

Syrj�al�a [19] 16:3863 n.a. 64:833 220:56 8:8251 n.a. n.a.
0:8500 0:0379 n.a. n.a.

Table VIII. Comparison of the bench mark solutions from Le Qu�er�e [18] and the �nite element solutions
by Syrj�al�a [19] (Ra=107; Pr=0:71).

umax vmax Numax Numin
First author | mid| | |max y(x=0:5) x(y=0:5) Nu0 y(x=0) y(x=0)

Present (n=80) 29:3293 30:1295 148:5880 699:2687 16:4450 40:3369 1:3831
0:8798 0:0214 0:0092 1

Present (n=100) 29:3328 30:1183 148:5402 699:2121 16:4800 39:5059 1:3713
0:8792 0:0213 0:0160 1

Present (n=120) 29:3461 30:1371 148:5357 699:3002 16:4965 39:3380 1:3674
0:8795 0:0213 0:0184 1

Present (n=140) 29:3524 30:1549 148:5751 699:2764 16:5054 39:3230 1:3660
0:8798 0:0213 0:0180 1

Present (n=160) 29:3562 30:1553 148:5695 699:2991 16:5106 39:2540 1:3655
0:8794 0:0213 0:0179 1

Le Qu�er�e [18] 29:361 30:165 148:59 699:17 16:523 39:39 1:366
0:879 0:021 0:018 1

Syrj�al�a [19] 29:3616 n.a. 148:593 699:506 16:5299 n.a. n.a.
0:8794 0:0213 n.a. n.a.

[16] (Ra=103–106) and Le Qu�er�e [18] (Ra=106 and 107) have been taken as references
for comparison. De Vahl Davis [16] has estimated the percentage errors of his benchmark
solutions for Ra=103, 104, 105 and 106 are no more than 0.1, 0.2, 0.3 and 1.0. Results show
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Table IX. Percentage di�erences with respect to the reference quantities.

Ra h | mid| umax vmax Nu0

1/20 0:017 0:005 0:008 0:035
1/30 0:034 0:002 0:002 0:035

103 [16] 1/40 0:034 0:002 0:010 0:044
1/50 0:025 0:016 0:021 0:044
1/60 0:008 0:024 0:032 0:053

1/20 0:096 0:123 0:092 0:125
1/30 0:074 0:059 0:072 0:205

104 [16] 1/40 0:065 0:042 0:063 0:241
1/50 0:059 0:037 0:059 0:263
1/60 0:055 0:035 0:057 0:272

1/30 0:046 0:097 0:067 0:048
1/40 0:053 0:056 0:073 0:146

105 [16] 1/50 0:057 0:043 0:072 0:192
1/60 0:057 0:037 0:071 0:219
1/70 0:055 0:035 0:070 0:232

1/40 0:347 0:575 0:579 0:383
1/60 0:353 0:360 0:536 0:103

106 [16] 1/80 0:388 0:331 0:547 0:006
1/100 0:401 0:322 0:550 0:030
1/120 0:406 0:310 0:550 0:052

1/40 0:059 0:258 0:033 0:475
1/60 0:053 0:044 0:009 0:196

106 [18] 1/80 0:018 0:015 0:001 0:099
1/100 0:005 0:006 0:003 0:062
1/120 0:000 0:005 0:003 0:040

1/80 0:107 0:001 0:014 0:472
1/100 0:096 0:033 0:006 0:260

107 [18] 1/120 0:050 0:036 0:018 0:160
1/140 0:029 0:010 0:015 0:106
1/160 0:016 0:013 0:018 0:075

very good agreement with the references solutions from de Vahl Davis [16] and Le Qu�er�e
[18]. The agreement is particularly good with the results of Le Qu�er�e [18], who solved the
problems by applying a pseudo-spectral method based on Chebyshev polynomials. The formu-
lation was based on primitive variables, and the high accuracy of the solutions was ensured
by increasing the spatial resolution up to a 128× 128 polynomial expansion.
Figures 4–7 contain level curves for vorticity and temperature functions. An analysis of

pictures shows that the �ux is symmetric with respect to the centre for every Ra. At Ra=104
the main feature of the �ow is a central elliptic vortex, and the heat transfer is mainly
due to conduction (vertical isotherms). For Ra=105, the vortex breaks into two vortices
moving toward the vertical walls, for higher values of Ra, a third, weaker vortex is observed.
Increasing Ra causes a change of heat transfer mechanism. In fact, convection tends to become
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Figure 4. Isothermal lines (left) and isovorticity lines (right) at Ra=104.

Figure 5. Isothermal lines (left) and isovorticity lines (right) at Ra=105.

Figure 6. Isothermal lines (left) and isovorticity lines (right) at Ra=106.
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Figure 7. Isothermal lines (left) and isovorticity lines (right) at Ra=107.

Table X. Comparison of results from the current compact fourth-order method and
the stable fourth-order method in Choo and Schultz [9] for Pr=0:0001 and Ra=100.

Reference n | mid| Nu

Present method 60 0:1007 1:0008
80 0:0986 1:0008

Choo and Schultz [9] 80 0:1033 0:9995

Table XI. Comparison of results from the current compact fourth-order method and the stable
fourth-order method in Choo and Schultz [9] for Pr=10 and Ra=100 as a function of n.

Methods n=10 n=20 n=40 n=60 n=80

Present compact Nu 1.0022 1.0015 1.0014 1.0014 1.0014
fourth-order | mid| 0.1257 0.1263 0.1264 0.1264 0.1264
scheme |�mid| 3.5048 3.5184 3.5187 3.5176 3.5159

Stable Nu 0.9903 0.9958 0.9982 0.9988 0.9980
fourth-order | mid| 0.1248 0.1259 0.1262 0.1263 0.1263
method [9] |�mid| 3.494 3.508 3.515 3.517 3.517

dominant: The isotherms are vertical everywhere, being horizontal only in the neighbourhood
of vertical walls (very thin thermal boundary layer).
In addition, a collection of results from 37 sources is summarized in Reference 15. One

source used a mesh size n=80 for Ra=106, but had di�culties preserving the symmetry
of the problem. Also, none of the methods in References [4, 8, 15–19] indicates success with
small Pr. But the present method produced results for a wide range of Pr. Table X compares
the results of the present method with those of Choo and Schultz [9] for Pr=0:0001 and
Ra=100, and Table XI shows the results for Pr=10 and Ra=100. Our numerical results
showed that for Pr¿1 the present method converged very nicely. The results did not show
any change for Pr¿10; Ra=100.
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5. CONCLUSION

In this work we have developed a new compact fourth-order scheme for the time-independent
stream function–vorticity form of the two-dimensional, incompressible Navier–Stokes/Bous-
sinesq equations governing the �uid �ow and heat transfer. We have tested the present method
for one problem, which has exact solutions and solved the heated cavity problem. The e�ec-
tiveness of the developed method is exhibited from the numerical results. The key point with
the present scheme is that it allows direct iteration for low-to-high Ra. It is the success of
the current method with the wide range of Ra, Pr and mesh sizes that indicates the potential
of this method as an accurate and stable numerical method applicable to a wide range of
problems.

APPENDIX A

This appendix presents a brief derivation of the formula (70). Using Taylor series at an
arbitrary node (x0; yj) along the vertical wall x=0, we have

T1; j + �T2; j = (1 + �T0; j + h(1 + 2�)(Tx)0; j + (h2=2)(1 + 4�)(Txx)0; j + (h3=6)(1 + 8�)(Txxx)0; j

+(h4=24)(1 + 16�)(Txxxx)0; j +O(h5) (A1)

Using (2), (Txx)0; j in (A1) can be written as

(Txx)0; j=(−Tyy +  yTx −  xTy)0; j=0 (A2)

where we have used the fact that ( x)0; j=0, ( y)0; j=0 and (Tyy)0; j=0 on the vertical wall
x=0. Furthermore, di�erentiating (A2),

(Txxx)0; j=(−Tyyx +  xyTx +  yTxx −  xxTy −  xTxy)0; j=(−Tyyx)0; j (A3)

where we have used the fact that ( x)0; j=0, ( y)0; j=0, ( xy)0; j=0, and (Ty)0; j=0 on the
vertical wall x=0.
Substituting (A2) and (A3) into (A1), and setting �= − 1

16 , gives

16T1; j − T2; j=15T0; j + 14h(Tx)0; j + (4h3=3)(Tyyx)0; j +O(h5) (A4)

Thus, if we use

(Tyyx)0; j = [−3(T0; j+1 − 2T0; j + T0; j−1) + 4(T1; j+1 − 2T1; j + T1; j−1)

−(T2; j+1 − 2T2; j + T0; j−1)]=(2h3) +O(h2) (A5)

to substitute for (Tyyx)0; j, the resulting fourth-order formula is

(Tx)0; j = (−15T0; j + 16T1; j − T2; j)=(14h)

+ [−3(T0; j+1 − 2T0; j + T0; j−1) + 4(T1; j+1 − 2T1; j + T1; j−1)

− (T2; j+1 − 2T2; j + T0; j−1))=(21h) +O(h4) (A6)
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